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In contrast to the Copenhagen interpretation we consider quantum mechanics as uni-
versally valid and query whether classical physics is really intuitive and plausible. We
discuss these problems within the quantum logic approach to quantum mechanics where
the classical ontology is relaxed by reducing metaphysical hypotheses. On the basis
of this weak ontology a formal logic of quantum physics can be established which is
given by an orthomodular lattice. By means of the Solèr condition and Piron’s result
one obtains the classical Hilbert spaces. However, this approach is not fully convincing.
There is no plausible justification of Solèr’s law and the quantum ontology is partly
too weak and partly too strong. We propose to replace this ontology by an ontology of
unsharp properties and conclude that quantum mechanics is more intuitive than clas-
sical mechanics and that classical mechanics is not the macroscopic limit of quantum
mechanics.

1. THE DUALISM OF COPENHAGEN INTERPRETATION

Even today, 75 years after the discovery of quantum mechanics many quan-
tum physicists are convinced that the Copenhagen interpretation is still the right
way for understanding quantum physics. According to this interpretation we have
to distinguish two distinct worlds, the quantum world of microscopic entities and
the classical world of our everyday experience which is subject to classical physics.
In the quantum world we are confronted with many strange features, complemen-
tarity, nonindividuality, nonlocality, and the loss of determinism. However, the
apparatuses which measure and register the properties of the quantum system as
well as the human observer, who reads the observed data are parts of the classical
world that is free from the quantum physical absurdities mentioned. For describ-
ing and interpreting quantum physics we can use common language and classical
logic.
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We will query this doctrine here for several reasons. Firstly, during the last
decades it became obvious that quantum mechanics is not restricted to the mi-
croscopic world of nuclei, atoms, and molecules but can be applied also to
macroscopic systems. The discovery of macroscopic quantum effects like su-
perconductivity, superfluidity, macroscopic tunnelling, etc. are strong indications
that quantum physics holds also in the macroscopic world. Moreover, the suc-
cessful attempts to a quantum cosmology show that quantum mechanics can
even be applied on the cosmological level, to the problem of the creation of the
universe and to the universe as a quantum mechanical object. Hence it seems,
that there are no serious doubts today that quantum mechanics is universally
valid and can be applied to all objects from elementary particles to the entire
universe.

The second reason is presumably even more important. In the Copenhagen
interpretation quantum mechanics is considered to be less intuitive than classical
mechanics and sometimes paradoxical, whereas classical mechanics is assumed
to correspond to plausible reasoning and to intuitive results. This is, however, not
entirely correct. What we call “intuitive” and in accordance with “plausible reason-
ing” corresponds to our everyday experience, to our prescientific experience in the
macroscopic world. However, classical physics and in particular classical mechan-
ics is not exactly the theory of this prescientific experience. Classical mechanics
is loaded with many hypotheses which can be traced back to the metaphysics
of the seventeenth and eighteenth century. These metaphysical hypotheses are
without any empirical counterpart, they exceed clearly our everyday experience.
As examples we mention here the existence of an absolute time, the complete
determination of objects, the strict causality law, and the law of conservation of
substance. It is obvious that the consequences of these hypotheses are not per se
intuitive in the above mentioned sense.

In quantum mechanics we are confronted with a quite different situation.
Quantum mechanics may be understood as a theory of the physical reality which
is free from some of the metaphysical hypotheses mentioned, i.e. quantum me-
chanics dispenses with some metaphysical exaggerations of the classical theory.
It is important to note that quantum mechanics can be obtained from classical me-
chanics merely by reducing the ontological premises without incorporating new
empirical components. This will be demonstrated in detail within the framework
of the quantum logic approach to quantum mechanics. Consequently, in quan-
tum mechanics just those parts of classical mechanics are missing which are not
intuitive and which do not correspond to plausible reasoning. This means that
quantum mechanics is more intuitive than classical mechanics—a result which is
paradoxical at first glance. It is obvious that this result together with the universal
validity of quantum mechanics strongly invalidates the dualistic approach of the
Copenhagen interpretation.
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2. AIMING A NEW QUANTUM ONTOLOGY

The ontology of a certain domain of physics contains the most general fea-
tures of the external reality which is treated in the physical domain in question.
In particular the ontology should contain the material preconditions for a prag-
matics which allows for the constitution of a scientific language and thus for the
formulation of physical experience. The ontology which is underlying classical
mechanics will be called classical ontology and denoted by O(C). We will briefly
characterise this classical ontology.

According to O(C) there are individual and distinguishable objects Si and
these objects possess elementary properties Pλ in the following sense. An ele-
mentary property Pλ refers to a classical object system such that either Pλ or the
counter property P̄λ pertains to the system. An elementary property Pλ can always
be tested by measurement with the result that either Pλ or the counter property P̄λ

pertains to the object. Furthermore, objects are subject to the law of “complete de-
termination” according to which “if all possible predicates are taken together with
their contradictory opposites then one of each pair of contradictory opposites must
belong to it” (Kant, 1920). Hence an object S possesses each elementary property
P either positive (P ) or negative (P̄ ). It follows from these strong requirements
that objects can be individualised by elementary properties if impenetrability is
assumed as an additional condition. For objects of the external objective reality the
causality law and the law of conservation of substance hold without any restric-
tion. Since there exist an absolute and universal time which refers to all objects
of the external reality, the temporal development of these objects and their time
dependent properties are strictly determined by a causal law of nature which fulfils
also the conservation of substance.

There are important objections against this classical ontology. Since the
metaphysical and theological reasons of Newton are no longer relevant for a
justification of the ontology we have to search for alternative reasons. Are the
ontological assumptions intuitive and plausible in the sense mentioned above? This
is obviously not the case. The strict postulates of the classical ontology are almost in
accordance with our everyday experience, but the rigorousness of the assumptions
mentioned exceeds obviously the more qualitative and less rigorous prescientific
everyday experience. The strict causality law, the unrestricted conservation of
substance and the existence of one universal time are beyond our daily experience.
These and other hypotheses of the classical ontology must not be considered as
intuitive and plausible.

The second argument refers to the experimental evidence of the mentioned
hypothesis. There is no experimental indication that objects can always be indi-
vidualised and reidentified at later times, simply since experiments which would
confirm this assumption have never been performed in classical physics. In ad-
dition, the principle of complete determination mentioned above has never been
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tested with an accuracy which would allow to call the result a principle. Conse-
quently, there is no justification for a strict causality law such that the present state
of an object allows for predictions about all elementary properties. Hence we find
that there is no empirical justification for the classical ontology O(C). Instead, the
classical ontology is based on hypotheses whose origin can be traced back to the
metaphysics of the seventeenth and eighteenth century.

The classical ontology is neither intuitive and plausible nor is it justified by
experimental evidence. Moreover, what is more important–the classical ontology
O(C) is not in accordance with quantum physics. A quantum mechanical object
system does not possess all possible elementary properties Pλ either positive (Pλ)
or negative (P̄λ). It is not carrier of all possible properties. Instead, only a subset
of all properties pertains to the system and can simultaneously be determined.
These properties are often called “objective” properties and they pertain to the
object like in classical ontology. From these restrictions it follows that in quantum
mechanics no strict causality law can be established and that object systems cannot
be individualised and reidentified by means of their objective properties.

We will not use here these empirical results for a reconstruction of an ontol-
ogy for quantum phenomena. However, we learn from these considerations, that
the classical ontology is not only based on classical metaphysics and partially hy-
pothetical, but that classical ontology contains too much structure and too strong
requirements compared with quantum physics. This observation offers the inter-
esting possibility to formulate the ontology O(Q) of quantum physics by relaxing
and weakening some hypothetical requirements of the classical ontology O(C). It
is important to note that no new requirements must be added to the assumptions
of the classical ontology. Quantum ontology can thus be formulated as a reduced
version of the classical ontology O(C):

O(Q)-1: If an elementary property P pertains to a system as an objective property,
then a test of this property by measurement will lead with certainty to the
result P . In addition, any arbitrary elementary property P can be tested
at a given object with the result that either P or the counter property
P̄ pertains to the object system. (These requirements are in complete
accordance with O(C)).

O(Q)-2: Quantum objects are not completely determined. They possess only a
few elementary properties either positive or negative. Properties which
pertain simultaneously to an object are called “objective” and “mutually
commensurable.”

O(Q)-3: For quantum objects there is no strict causality law, simply since the
present state of an object system is never completely determined.

O(Q)-4: The lack of complete determination and of strict causality implies
that quantum objects cannot be individualised and reidentified at later
times.
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The mutual relations between classical and quantum ontology are the key for
the very intertheoretical relations between classical and quantum physics. This
will become obvious in the quantum logic approach to quantum mechanics when
quantum ontology is used as starting point for establishing a formal language and
logic of quantum physics. This way of reasoning will be made explicit in the
following section.

3. THE QUANTUM LOGIC APPROACH
TO QUANTUM MECHANICS

3.1. Language, Semantics, and Pragmatics

On the basis of the quantum ontology O(Q) described above we will es-
tablish a formal language of quantum physics. Let S be a proper quantum sys-
tem and A,B, . . . elementary propositions which attribute predicates (properties)
P (A), P (B), . . . to system S at times t1, t2, . . . Hence, we write for elementary
propositions A(S, t1), B(S, t2), . . . According to O(Q) − 1 we assume that for ev-
ery elementary proposition A there exists a finite testing procedure which shows
whether P (A) pertains to S or not. If P (A) pertains to S at time t1 , then the
proposition A(S, t1) is called to be “true,” otherwise A(S, t1) is said to be “false.”
The assumption, that for every elementary proposition there is a testing proce-
dure which decides between “true” and “false” means, that these propositions
are “value definite.” Hence, an elementary proposition can either be proved (with
result A) or disproved (with result Ā), where Ā is the counter proposition of A.
Furthermore, we assume that after a successful proof of A new proof attempt
leads with certainty to the same result, provided the time interval between the
two proof attempts is sufficiently small. This requirement is again in accordance
with O(Q)-1. Since after the first test the property P (A) pertains objectively to
the system and can thus be tested with the certain result P (A). This assumption
means that there are repeatable measurement processes, which can be applied to
the testing procedures. However, and this is an important restriction of O(C)—if
after a successful proof of A, say, another proposition B is proved, then a new
proof attempt of A will in general not lead to the previous result. Hence, we will
not assume that two propositions A and B are in general simultaneously decidable.
If accidentally two propositions A and B are always jointly decidable, we will call
A and B “commensurable.” In this case, after the proof attempt of B the result of
the previous A-test is still available. However, in the general case the result of a
previous test is only restrictedly available.

On the basis of the set SQ
e of elementary propositions we introduce the

logical connectives by the possibilities to attack or to defence them, i.e. by the
possibilities to prove or to disprove the connective. Here, we consider the sequen-
tial conjunction A � B (A and then B) which refers to two subsequent instants
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of time t1 and t2 with t1 < t2 and the logical connectives ¬A (not A), A ∧ B (A
and B), A ∨ B (A or B), and A → B (if A then B)—which refer to one simul-
taneous instant of time. The definitions of the sequential and logical connectives
by attack-and defence schemes can be illustrated most conveniently by chrono-
logically ordered proof trees. Correspondingly, in the proof tree of the sequential
conjunction A � B, the first branching point corresponds to a A-test at t1, the sec-
ond one to a B-test at t2. Note, that for the truth of A � B the commensurability of
A and B does not matter. However, for the proof trees of the logical connectives,
which refer to one simultaneous instant of time, the commensurabilities of the
elementary propositions play an important role. The concepts of truth and falsity
of a compound proposition which is composed by the connectives can then be
defined by success and failure in a proof tree, respectively (Mittelstaedt, 1978,
1987; Stachow, 1980).

Furthermore, we will define here binary relations between propositions. First,
the proof equivalence A ≡ B means that A can be replaced in any proof tree of a
compound proposition by B without thereby changing the result of the proof tree.
Second, the value equivalence A = B means that A is true (in the sense of a proof
tree) if and only if B is true. Third, the relation of implication A ≤ B can be defined
by A ≡ A ∧ B. Hence, the two implications A ≤ B and B ≤ A imply the proof
equivalence A ≡ B. Finally, we mention that A → B is true if and only if A ≤ B

holds. The full quantum language SQ can then inductively be defined by the set
SQ

e of elementary propositions and the connectives mentioned. Together with the
always true elementary proposition V , the always false elementary proposition �,
and the three relations one obtains the language SQ.

3.2. Quantum Logic

The semantics described here is a combination of a realistic semantics (for
elementary propositions) and a proof semantics (for connectives). Hence, the truth
of a compound proposition depends on the connectives contained in it as well as
on the elementary propositions and their truth values. However, there are finitely
connected propositions which are true in the sense of the semantics mentioned,
irrespective of the truth values of the elementary propositions contained in it.
These propositions are called formally true. The precondition that measurements
are repeatable implies that A → A, the law of identity, is formally true. The
value definiteness of elementary propositions implies that also finitely connected
propositions are value definite and thus A ∨ ¬A, the tertium non-Datur law, is
formally true. In a similar way, it follows that ¬(A ∧ ¬A), the law of contradiction,
and (A ∧ (A → B)) → B, the modus ponens law, are formally true. Formally true
propositions can also be expressed by “formally true implications.” For example,
the modus ponens law reads A ∧ (A → B) ≤ B. In addition, the relations A ≤ V
and � ≤ A hold for all propositions A ∈ SQ. The formal truth of a proposition
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A can then be expressed by V ≤ A. E.g. the tertium non-Datur law reads V ≤
A ∨ ¬A .

There are two kinds of propositions A ∈ SQ. If a compound proposition con-
tains in addition to elementary propositions only the logical connectives ∧,∨,¬
and → , then it is called a “logical proposition.” In the more general case, when the
proposition contains also sequential connectives, in particular the sequential con-
junction � , then it is called a “sequential proposition.” In addition to the formally
true logical propositions mentioned above, there are also formally true sequential
propositions. If A and B are logical propositions then A ∧ B ≤ A � B is a formally
true implication. The totality of formally true implications can be summarized in
a calculus which contains “beginnings” ⇒ A ≤ B and rules A ≤ B ⇒ C ≤ D.
Here, we distinguish the calculus LQ of formally true logical propositions and the
calculus SQ of formally true sequential propositions (Mittelstaedt, 1978; Stachow,
1980).

For an algebraic characterization of the calculi LQ and SQ we consider the
corresponding Lindenbaum–Tarski algebras. The Lindenbaum–Tarski algebra of
the calculus LQ is given by a complete, orthomodular lattice LQ. Subsets of
mutually commensurable propositions constitute a Boolean sublattice LB ⊆ LQ

of the lattice LQ (Mittelstaedt, 1987). Moreover, if the entire quantum language
SQ refers to one individual quantum system, then the lattice LQ is atomic and
fulfils the covering law (Stachow, 1984). In this case we denote the lattice by L∗

Q.
The Hilbert lattice LH of projection operators in Hilbert space can be obtained
from the lattice L∗

Q by adding the Solér law, the meaning of which is, however,
still open (Solér, 1995). Correspondingly, the Lindenbaum–Tarski algebra of the
calculus SQ of sequential quantum logic is given by a Baer∗ semigroup. (Foulis,
1960; Stachow, 1980). It is well known that by means of a result by Piron (1976)
from the lattice LH the three classical Hilbert spaces can be obtained and that for
the complex numbers C quantum mechanics in Hilbert space is achieved.

3.3. Is Quantum Mechanics a Priori Valid?

The described approach to quantum mechanics which starts from the relaxed
quantum ontology O(Q) and leads finally to the quantum mechanical Hilbert
space, is sometimes considered as an a priori justification of quantum theory
(Mittelstaedt, 1978). The term “a priori” seems to be legitimated here, since the
starting point of this approach are the most general preconditions of a scientific
language of physics, i.e. the assumptions of the weak ontology O(Q). However,
this way of reasoning is not fully convincing. Firstly, up to now there is no
plausible and intuitive justification of Solér’s law, which appears in the present
approach as an additional ad hoc assumption. Hence, one could ask whether the
quantum ontology O(Q) is really the right starting point. O(Q) is too weak, since
the main restriction of quantum ontology with respect to classical ontology, the
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complementarity requirement, is a very strong postulate. Two properties which
are not commensurable for accidental reasons are complementary in the sense
that they cannot be tested simultaneously. Complementarity in this strong form
must be required in quantum mechanics for sharp observables which are given by
PV-measures.

However, even in quantum mechanics the strong complementarity require-
ment can be relaxed by the uncertainty principle making use of unsharp observables
in the sense of POV-measures. POV-measures are the most general observables
which allow for a probability interpretation of quantum mechanics (Busch et al.,
1995). Two unsharp properties of a quantum system can be attributed jointly to
the object, if the conveniently defined degrees of unsharpness of the two prop-
erties fulfil the Heisenberg uncertainty inequality (Busch, 1985). Obviously, a
quantum ontology O(Qu) which replaces the complementarity requirement by
the uncertainty principle, is somewhat stronger than the original ontology O(Q).

The ontology O(Q) is not only too weak but—with respect to another
feature—also too strong. In accordance with the classical ontology O(C) we
assumed in O(Q) − 1 that any elementary property P can be tested experimen-
tally with the result that either P or the counter property P̄ pertains to the system.
This ontological precondition implies that elementary propositions of the quantum
language are value definite and that the tertium non-Datur holds in quantum logic
LQ. However, the ontological precondition that any elementary property can be
tested by experiment (with the result P or P̄ ) exceeds the possibilities of Hilbert
space quantum mechanics. Within the framework of the quantum theory of uni-
tary premeasurements it follows that pointer objectification cannot be achieved
for closed systems (Mittelstaedt, 1998). Hence, value definiteness of elementary
propositions is incompatible with quantum mechanics in Hilbert space and must
be relaxed in some sense. In this situation it suggests itself to begin with elemen-
tary propositions that are not value definite and correspond to unsharp properties
given by POV-measures2 Hence it seems that also the second objection against
the quantum ontology O(Q) can be taken account of by the quantum ontology
O(Qu) based on unsharp properties.

Hence, on the basis of the slightly modified quantum ontology O(Qu) a fresh
start by means of unsharp properties seems to be a quite promising attempt. In
a first step of this approach a formal language and logic of not necessarily value
definite quantum mechanical propositions must be developed. In a second step
from the algebraic structure of the logic the algebra of effects and the Hilbert
space must be reconstructed. Hence one could either start from a language of
unsharp propositions or from a modified algebraic structure of quantum logic.
In recent years many interesting logical systems for unsharp propositions were

2 It must be mentioned that up to now it is not yet quite clear whether the problem of pointer objectifi-
cation can completely be solved by POV-measures (Busch, 1998).
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proposed (Dalla Chiara, 1993, 1994, 1995; Foulis, 1997; Giuntini, 1989, 1990;
Mittelstaedt, 1978).

However, it is still an open question whether in this way a consistent oper-
ational approach to quantum mechanics can be obtained. Up to now the logical
systems mentioned were not yet reconstructed in an operational way starting from
a formal language of unsharp propositions. Furthermore, the Lindenbaum-Tarski
algebra of a logical calculus of unsharp propositions is not per se equivalent to
the algebra of effects in Hilbert space. We do not know which kind of law must be
added to the algebra of unsharp propositions in order to obtain the effect algebra
mentioned (it could be as complicated as the Solér law). Even the last step of an
operational foundation of quantum physics, the way from the effect algebra to the
Hilbert space requires more detailed investigations.

3.4. The Ontological Priority of Quantum Mechanics

Although the task of reconstructing quantum mechanics on the basis of a logic
of unsharp propositions is not yet finally performed, we can draw already some
interesting conclusions which refer to the interpretation of quantum mechanics.
The basis of this approach, the (uncertainty) ontology O(Qu) is somewhat richer
than the (complementarity) ontology O(Q) but weaker than the classical ontology
O(C) of complete determination. This classical ontology is not only based on
experience but also on several metaphysical hypotheses—which are weakened or
cancelled in O(Qu).

Since these metaphysical hypotheses (complete determination, individual-
ity, and full determinism) clearly exceed our everyday experience, and since we
call phenomena intuitive and understandable if they are in accordance with this
everyday experience, classical mechanics is not thoroughly intuitive. However,
since the hypotheses contained in the classical ontology O(C) are strongly re-
duced in the (uncertainty) ontology O(Qu) as well as in the (complementarity)
ontology O(Q), we expect that the implications of the quantum ontology O(Qu)
are more intuitive and more plausible than the implications from the classical
ontology.

In particular the quantum logic approach can further illustrate this result. The
logical systems which follow from the ontologies O(Q) and O(Qu) are based on
weaker and less hypothetical pragmatic preconditions than the Boolean lattice LB

of classical logic. Hence the resulting quantum mechanics is more intuitive and
more plausible than classical mechanics. In addition, since quantum mechanics is
based on weaker premises than classical mechanics, it is nearer to the “truth” than
classical mechanics.

On the basis of these results we can formulate the rôle of classical mechan-
ics. Firstly, classical mechanics is loaded with metaphysical hypotheses which
clearly exceed our everyday experience. Since quantum mechanics is based on
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strongly relaxed hypotheses of this kind, classical mechanics is less intuitive and
less plausible than quantum mechanics. Hence classical mechanics, its language
and its logic cannot be the basis of an adequate interpretation of quantum me-
chanics. Secondly, classical mechanics is not the limit of quantum mechanics for
macroscopic phenomena. Since quantum mechanics of closed systems does not
explain the objectification, i.e. the classical behavior of pointer values, classical
mechanics cannot be the macroscopic limit of quantum mechanics. However, this
argument which is still subject of controversial debates, is not the main reason.
The essential argument which shows that classical mechanics is not the limiting
case of quantum mechanics is based on the observation that classical mechanics
is loaded with metaphysical hypotheses without any empirical counterpart. Since
some of these hypotheses are explicitly eliminated in quantum theory, it is obvious
that there is no approximation procedure which leads from quantum mechanics to
classical mechanics. Classical mechanics describes a fictitious world which does
not exist in reality.
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